
Bilkent University

Senior Design Project
Nino: Nino Is Not OCR

Low-Level Design Report

Ata Deniz Aydın, Ecem İlgün, Ergün Batuhan Kaynak, Selim Fırat Yılmaz

Supervisor: Hamdi Dibekl ioğ lu

Jury Members: A. Ercüment Çiçek and Özcan Öztürk

Low-Level Design Report
Feb 18, 2019

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2. 

Department of Computer Engineering

Contents

1 Introduction 2

1.1 Design tradeoffs . 3

1.1.1 Usability vs Functionality . 3

1.1.2 Extensibility & Modularity vs Performance 3

1.1.3 Performance vs Cost . 3

1.1.4 Availability vs Cost . 3

1.1.5 Cost vs Accuracy . 4

1.2 Interface documentation guidelines . 4

1.3 Engineering standards . 4

1.4 Definitions, acronyms, and abbreviations . 5

2 Packages 5

2.1 Client . 6

2.1.1 Presentation . 10

2.1.2 Controller . 10

2.2 Server . 11

2.2.1 Logic . 13

2.2.2 Pipeline . 13

2.2.3 Modules . 13

2.2.4 Data Access Objects . 13

3 Class interfaces 14

3.1 Client . 14

3.1.1 Presentation . 14

3.1.2 Controller . 17

3.2 Server . 18

3.2.1 Logic . 18

3.2.2 Pipeline . 18

3.2.3 Modules . 20

3.2.4 Data Access Objects . 23

4 Appendix 25

1

1 Introduction

Note taking amounts to an important part of studying materials for many students, be

they grade school or graduate students. In many cases, there are no lecture notes or slides

readily available, or the ones that are available do not cover all of the lecture content. This

requires students to take notes during the lecture.

However, in some cases, the student has to note down the words fast without truly

processing their content, or write down equations without having the time to analyze and

thus understand them. In the case of writing down sentences, one can achieve faster note

taking with tablets/computers [1] but when the lecture notes consist of plots, graphs or

mathematical equations, our market research shows that there is no hardware/software

help to achieve faster note taking than writing it down [2].

In some cases, scribing all the things written on the board (even without making sense

of it) proves to be quite hard, therefore many note taking strategies have arisen [3]. Many

of these strategies revolve around the rule that one first takes notes of keywords, and

then rewrites the notes after class [3]. However, there are two possible problems with this

strategy: the student might forget the information conveyed via that particular keyword,

or might miss important information and not write a keyword about it.

Currently, EverNote™, OneNote™ and Google Docs™ offer OCR (optical character recog-

nition) features in which an image is converted to a text. However, these conversions do

not cover mathematical equations or figures. As it is discussed above, many courses include

some kind of figures or mathematics, therefore capturing only text with OCR might lead

to loss of important information. Hence, current software are not capable of providing a

complete note taking system.

We thus propose an app that will convert handwritten and printed notes into an editable

format which can be exported as LATEX or PDF. These notes will preserve the alignment

of the original picture, in either landscape or portrait format. The student will be able to

add his/her own notes on top of the ones extracted from the image. In this way, we hope

to engineer a note taking system that would make the lecture not only more interactive

for the student, but will also let the student listen to more of the lecture.

2

1.1 Design tradeoffs

1.1.1 Usability vs Functionality

We aim to provide an easy and smooth experience in order to attract and keep users. Users

should be able to navigate through the client apps without having problems on how to use

it, the process should seem natural without a high learning curve. User interfaces for web

and Android should not differ too much, so that they do not seem like altogether different

products for users switching devices. Therefore, usability of the system is an important

design goal. However, we wish to add several functionalities in order to make Nino a novel

product on the marketplace. Therefore, we cannot diminish functionality. Nino aims to

balance between functionality and usability.

1.1.2 Extensibility & Modularity vs Performance

The system will be highly modular. Any additional modules will be integrated without

causing any problems to other modules. The system will be implemented in a way that

addition of extra modules will be easy. Adding extra modules to the system should be

straightforward as long as the module functions correctly by itself. Hence, we decided to

favor use of patterns -e.g. visitor- and concepts -e.g. inheritance- over performance.

1.1.3 Performance vs Cost

There will be quite a bit of processing when notes are being created. The user should

not hang waiting for a long time to keep both interactivity and usability at acceptable

levels. To this aim, each function module must not take more than 5 seconds to complete

its process. However, we do not have the budget to buy hardware and distribute the

processing, therefore the performance of the product is limited by our budget.

1.1.4 Availability vs Cost

Since all the note processing is done in a remote server and not locally, availability is at

utmost importance. System uptime should be high to not cause any inconvenience to the

user. Scheduled maintenances to the core functionality should be announced beforehand

3

and should not take very long. Since the system is highly modular, the whole system

should not be down due to an update to a particular submodule. However, we aim to keep

cost of this minimal.

1.1.5 Cost vs Accuracy

Since Nino relies on machine learning algorithms to provide its services, the system will

have an accuracy rate in which wrong output is accepted to some degree. However, the

accuracy of the output should be high enough so that the users will continue to use our

services. Due to budget constraints, we have chosen to use free off the shelf software when

needed rather than buying commercial ones. Free software might provide less accurate

results than commercial ones, therefore, we choose to favor cost over accuracy.

1.2 Interface documentation guidelines

Class ClassName

Class description

Attributes

attribute Attribute description

Methods

method(arg1, arg2) Method description

1.3 Engineering standards

In our reports, we have relied on the Unified Modeling Language (UML) standard [10]

to model class interfaces and interactions, the former through object, class, package and

deployment diagrams and the latter through activity and sequence diagrams. We have also

followed the Institute of Electrical and Electronics Engineers (IEEE) style [11] in citing

references.

4

1.4 Definitions, acronyms, and abbreviations

Note: a handwritten picture containing regions of text, equations, plots and figures.

Sketch: any digitizable type of data apart from text and equations.

Segment: a maximal rectangular region in a note consisting of a single type of data (text,

equations or sketches), enclosed by a bounding box.

Category: a directory containing notes of the same context (e.g. course topic).

Client: the mobile or web application interacting with the user.

Server: the system communicating with each client and processing images sent from them.

Segmentation: partitioning a given image into different segments.

Detection: identifying segments of a particular type (e.g. text segments) without neces-

sarily recognizing the data stored in the segment.

Recognition: identifying the content in a particular segment (e.g. recognizing the text

written in a given text region).

Annotation: improving and adding to the content stored in each segment, e.g. identifying

keywords in text and adding hyperlinks to keywords.

2 Packages

The large-scale architecture of the application will follow the client-server model. The

client side will be in the form of a mobile or web application that interacts with a single

user, allowing the user to capture images and send them to the server to be converted to

a note, or view or edit already created notes. The server side will handle most of the data

processing necessary to convert images into notes, such as region detection and recognition,

as well as maintaining the data stored for each user including notes stored in the cloud and

authentication information.

5

2.1 Client

The client is the user interface layer of Nino, where the user interacts with notes to cre-

ate and edit them. The client contains the presentation and controller subsystems. The

presentation subsystem contains user interface elements for the user to interact with. The

controller subsystem is responsible of creating appropriate requests depending on the events

initiated by the views and then communicating with the server to send the requests.

Along with custom created layouts and Android activities, Nino uses an open source

note taking project, Scarlet-Notes, to enhance UI presentation and logic. Nino’s activities

and logic are connected to Scarlet-Notes (denoted as ”base” in the diagrams), and most of

the functionality is changed to fit Nino’s use case.

Figure 1: High level view of NinoClient. Package Nino contains all the presentation and

logic subsystems and uses off the shelf libraries.

6

Figure 2: The partial* hierarchy of modules inside the client system. *: No automation to

generate UML diagrams of Kotlin classes exists at this point, only java classes are shown.

7

Figure 3: List of all non-library packages and classes.

8

Figure 4: nino package.

9

2.1.1 Presentation

The presentation layer contains views and their event firing mechanisms.

LoginActivity: The view class for the login screen. Checks credential formats before

asking for request creation. Launches MainActivity (located in package ”base”) if

the user credentials are valid.

RegisterActivity: The view class for the register screen. Checks credential formats be-

fore asking for request creation. Launches LoginActivity if the user is created suc-

cessfully.

CameraActivity: The view class for the camera screen. The user takes the picture to

be processed by Nino here. Uses CameraManager class and opencv library to detect

a region where actual writings, figures, or mathematical expressions are located in

the image. Uses a PolygonView to let the user to select/edit the region if automatic

region detection is not enough.

MainActivity: The view class for the notes (main) screen. Lists the notes of the user

and allows interactions with them, such as editing and deleting. Can launch the

CameraActivity to take pictures and initiate note creation.

2.1.2 Controller

The logic of the client executes operations like image processing and server communication,

depending on the events created by the views on presentation layer.

CameraManager: Responsible of configuring the camera in Android apps and taking

pictures.

ImageProcessor: Uses Opencv library to detect a region where actual writings, figures,

or mathematical expressions are located in the image. Handles morphological oper-

ations, edge detection, image enhancement and warping to the images. Configures a

PolygonView created by PolygonViewCreator to present the resulting region to the

user.

PolygonViewCreator: Creates a PolygonView to let the user to select/edit the region if

automatic region detection is not enough. PolygonView is an editable polygon region

10

that denotes which part of the image will be warped and sent to the Nino server to

be processed.

2.2 Server

An image and the required operations on that image arrive as a request to the server.

The server then processes the image with the given modules and creates an output. The

output is then sent back to the client as a response. In addition, the server also handles

authentication and updates to user information database. The server is separated into the

Logic and Data layers. The request handling is also inside the server side of the project,

and is maintained by Django.

The logic layer governs the database operations and the note processing pipeline. User

management also maintains a list of active users, handles invocations to log in, log out

or create a new account, and authorizes accesses or modifications to the storage of each

user. Lastly, note processing receives an image, processes it and converts it into a note, or

receives and processes existing notes either for the purpose of training the models used or

annotating notes again after editing.

The data layer is where the models and other persistent information are kept. The

subsystem for data management holds for each user the storage space of notes reserved for

them, as well as authentication data and shared data used in note processing and other

configuration data.

The subsystem for note processing is itself broken down into several submodules: pre-

processing, segmentation, text recognition, mathematical expression recognition and text

analysis, which are executed in a pipeline. The image received is first sent to the preproces-

sor module, which denoises and straightens the image, and afterwards to the segmentation

module, where regions for text, equations, plots and figures are identified and organized in

a tree data structure. Each subsequent module then operates on and annotates this data

structure, functioning as an intermediate representation shared across modules. For exam-

ple, the module for text recognition visits each text region in the tree, processes the image

lying within the region, and writes the text it has read back to the node corresponding to

that region.

11

Figure 5: Server UML Diagram.

12

2.2.1 Logic

This is the subsystem responsible of Nino’s logic and processing. Pipeline and Modules are

two packages that constitute these operations.

RequestHandler: Turns client requests into tasks and runs them in the pipeline. Creates

responses and sends them back to the client.

2.2.2 Pipeline

Nino adopts a modular design. The pipeline package is the key component in realizing this

design choice.

NinoPipeline: After an incoming request, all the required modules are fetched from the

Modules package and turned into sequential operations. The pipeline runs these

modules one after the other to produce an output.

NinoObject: This is the object that is created using a request. The pipeline then pro-

cesses this object; modifying it to create the final output note.

Utils: Some utility functions for NinoPipeline and NinoObject.

2.2.3 Modules

Modules package contains the actual modules used to create notes.

LayoutAnalysis: Segments images into regions.

FigureAnalyzer: Processes figures in images, by e.g. denoising, straightening etc.

TextRecognizer: Recognizes text in text regions.

MathExpRecognizer: Recognizes mathematical expressions in math regions.

NLP: Contains operations related to natural language processing.

2.2.4 Data Access Objects

This layer is where the data access objects used by the application are kept.

13

User: User data access object.

Note: The notes created by the users.

Category: The category object that keeps notes organized.

Equation: The equation object that keeps equation information.

3 Class interfaces

3.1 Client

Automatically generated Java interface from Nino’s current prototype can be found in

Appendix.

3.1.1 Presentation

Class LoginActivity

The view class for the login screen.

Attributes

REQUEST READ CONTACTS int id for permission request of reading con-

tacts

Methods

onCreate(savedInstanceState) Performs initialization of all fragments.

attemptLogin() Checks the user’s username and password and

logs in if they are in the database.

isUsernameValid(username) Checks if username is valid, i.e. holds the

length etc. constraints.

isPasswordValid(password) Checks if password is valid, i.e. holds the

length etc. constraints.

showprogress(show) Shows the progress bar of the loading page

14

Class RegisterActivity

The view class for the registering screen.

Attributes

REQUEST READ CONTACTS int id for permission request of reading contacts

registerTask keeps a register request from the server

usernameView An AutoCompleteTextView* for the user to enter their user-

name.

emailView An AutoCompleteTextView* for the user to enter their

email.

passwordView Text field for the password.

passwordRepeatView Text field for repeating the password.

progressView The view called by showProgress method. It shows the

progress bar during communication with the server for the

register request.

loginFormView The view for login form (username & password entering

screen).

Methods

onCreate(savedInstanceState) Performs initialization of all fragments.

populateAutoComplete() Fills an AutoCompleteTextView* with autocompletion ad-

vises.

mayRequestContacts() Returns if the contacts can be read, based on permissions.

onRequestPermissionsResult(Calls populateAutoComplete() if permission to read

requestCode, permissions, grantResults) contacts is granted.

isUsernameValid(username) Checks if username is valid, holds the length etc. con-

straints.

isEmailValid(email) Checks if email is valid, holds the length etc. constraints.

isPasswordValid(password) Checks if password is valid, holds the length etc. con-

straints.

isRepeatPasswordValid(password, passwordRepeat) Checks if password and repeatPassword match and are

valid.

showprogress(show) Shows the progress bar of the loading page

onCreateLoader(i, bundle) Instantiate and return a new Loader, that loads data, for

the given id i.

onLoadFinished(cursorLoader, cursor) Called when a previously created Loader has finished its

load. [13]. Adds emails to its AutoCompleteTextView.

onLoaderReset(cursorLoader) Called when a previously created loader is being reset, and

thus making its data unavailable[13].

addEmailsToAutoComplete(emailAddressCollection) Add list of emails to AutoCompleteTextView.

*: AutocompleteTextView is an editable text view that shows completion suggestions automatically while

the user is typing [12]
15

Class CameraActivity

The view class for the ’taking photo of notes’ screen.

Attributes

REQUEST TAKE PHOTO int id for request of using android camera and taking a pho-

tograph.

mCurrentPhotoPath Current directory path that the photos are saved in.

rgba Matrix for RGB color values with an alpha channel.

mainlv Main image view.

pvc PolygonViewCreator for the camera activity page.

progressView The view called by showProgress() method. It shows the

progress bar during communication with the server for sav-

ing the photo.

cameraView The view of android camera for taking photos inside the app.

token Token to check against the server token. If matched the user

is authorized

edgeDetectedTakenImage Bitmap of edges of the photograph

finalImage The image bits shown to user.

warpButton The warp button.

Methods

onCreate(savedInstanceState) Performs initialization of all fragments.

dispatchTakePictureIntent() Creates & dispatches an intent to take a photo with the

android camera and share it with the app.

onActivityResult(requestCode, resultCode, data) If picture is taken: calls rotateBitmapOrientation() and

detectNote() on the picture.

persistImage(bitmap) Creates a image file and saves a bitmap image, e.g.

finalImage, there.

saveBitmapToFile(file) Saves the bitmap image to a file.

detectNote(bitmap) Detects edges of the note in the photograph and returns

bitmap of the note.

matToBit() Converts Mat to Bitmap type.

warp(inputMat, startM) Warps the image to represent the note better as a scanned

image.

rotateBitmapOrientation(photoFilePath) Normalizes the image’s orientation to portait, as in regular

A4 paper print-outs.

createImageFile() Creates and saves an image file.

showprogress(show) Shows the progress bar of the loading page.

changeViewVisibility(show) Alters visibility of the cameraView

onResume() s invoked when CameraActivity is on the foreground. Ini-

tializes OpenCV library.

16

3.1.2 Controller

Class CameraManager

Manager class for configuring camera and taking pictures

Methods

rotateBitmapOrientation(Normalizes the image’s orientation to portait,

photoFilePath) as in regular A4 paper print-outs.

Class PolygonViewCreator

Creates and manages a PolygonView as explained in section 2.1.2.

Attributes

polygonView An instance of PolygonView.

rWidth Width ratio of the image bitmap

rHeight Height ratio of the image bitmap

bitmapPos Keeps the positions

getBitmapPositionInsideImageView() re-

turns.

Methods

createPolygonWithCurve(approxCurve, Sets the empty PolygonView instance with

rgba, iv) the data from ImageView, RGBA values and

the approximate curve obtained from con-

tours.

createPolygonWithRect(rect, rgba, iv) Sets the empty PolygonView instance with

the data from ImageView, RGBA values and

according the points defined by rect.

getBitmapPositionInsideImageView Returns width and height of image &

(imageView) its left and top positions.

getOutlinePoints(tempBitmap) Returns top-left, top-right, bottom-left and

bottom-right points of the image bitmap.

getPoints() Returns points that define the polygon.

getBitmapWidth() Returns width of bitmap.

getBitmapHeight() Returns height of bitmap.

17

Class ImageProcessor

Detects where the notes are in the picture, preprocesses it for further use.

Methods

detectEdges(bitmap, threshold) Detects edges of the note.

findContours(edges) Returns contours with the largest area.

findApproxCurve(maxContour) Finds and returns the best curve approxima-

tion of the image from the given countor area.

3.2 Server

3.2.1 Logic

Class RequestHandler

Handles requests to the server side API of Nino.

Attributes

pipeline NinoPipeline object.

Methods

handle request(self, request def) Handles the request given by request def.

3.2.2 Pipeline

Class NinoModule

A module processing note objects.

Attributes

name Name of the module.

requirements list List of modules that need to be applied to the

note before this module.

Methods

apply module(nino obj) Process the given note object and record the

output in the object.

get requirements list() Return the list of requirements.

18

Class NinoObject

A note object, which maintains a dictionary of outputs after each stage of processing.

Attributes

name Name of the object.

process output dict Dictionary mapping each process name to the

output of the process after processing the ob-

ject.

final out The output of the last process applied to the

object.

Methods

set(process name, process output) Assign process output to be the output re-

turned by the given process.

get(process name) Return the output returned by the given pro-

cess, or None if such a process has not been

executed yet.

get initial input() Return the initial input.

get final out() Return the output of the last process applied

to the object.

check requirement(process name) Return whether the given process has been

applied to the object.

Class NinoPipeline

Applies a sequence of modules to an object.

Attributes

nino obj: NinoObject The object to be processed in a pipeline.

modules : NinoModule[] The modules to be applied to the object in

order.

Methods

run() Apply each module in the sequence to the ob-

ject.

check requirements(process name) Return whether the given process has been

applied to the object.

19

Class NinoUtils

Utility functions for NinoObject and NinoPipeline.

Attributes

module names List of module names in the order they are to

be applied.

class references Dictionary mapping each module name to an

reference to the corresponding module.

Methods

load modules() Initialize class references.

get class references() Return class references.

request class references(module names) Return the class references for the given list

of module names.

request default objects(module names) Return a list of default instantiations for the

given list of module names.

3.2.3 Modules

Class Preprocessor : NinoModule

A module processing note objects.

Attributes

name Has constant value "Preprocessor".

requirements list Has constant value [].

Methods

apply module(nino obj) Process the given note object and record the

output in the object.

20

Class LayoutAnalysis : NinoModule

Segments images into regions.

Attributes

name Has constant value "LayoutAnalysis".

requirements list Has constant value ["Preprocessor"].

Methods

apply module(nino obj) Receive the initial image of the note object,

segment the image into regions, and record

as output a tree of bounding boxes for each

region.

Class TextRecognizer : NinoModule

Recognizes text in text regions.

Attributes

name Has constant value "TextRecognizer".

requirements list Has constant value ["LayoutAnalysis"].

model Neural network model to process images and

convert them into text.

Methods

apply module(nino obj) Receive and traverse the segmented bounding

box tree of the object, visit each text region

and annotate it with the text recognized in

it, and record as output the annotated tree.

21

Class MathExpRecognizer : NinoModule

Recognizes mathematical expressions in math regions.

Attributes

name Has constant value "MathExpRecognizer".

requirements list Has constant value ["LayoutAnalysis"].

model Neural network model to process images and

convert them into mathematical expression

trees.

Methods

apply module(nino obj) Receive and traverse the segmented bound-

ing box tree of the object, visit each math

region and annotate it with the mathemati-

cal expression recognized in it, and record as

output the annotated tree.

Class FigureAnalyzer : NinoModule

Processes figures in images.

Attributes

name Has constant value "FigureAnalyzer".

requirements list Has constant value ["LayoutAnalysis"].

Methods

apply module(nino obj) Receive and traverse the segmented bound-

ing box tree of the object, visit each figure

box and process it, and record as output the

annotated tree.

22

Class NLP : NinoModule

Contains operations related to natural language processing.

Attributes

name Has constant value "NLP".

requirements list Has constant value ["TextRecognizer"].

model Neural network model(s) for natural language

processing.

Methods

apply module(nino obj) Receive and traverse the segmented bounding

box tree of the object, visit each text box and

process it, and record as output information

such as keywords.

3.2.4 Data Access Objects

Class User : django.db.models.Model

Contains User data access object(DAO) class.

Attributes

username The username of the user.

email The email of the user.

password The hashed password of the user.

access group The access group of the user that de-

fines the rights to read/write/delete/modify

notes/categories/users etc.

categories List of categories belonging to the user.

notes List of notes of the user.

Methods

str () String representation of user object.

23

Class Category : django.db.models.Model

Contains category data access object(DAO) class.

Attributes

owner The Category object’s owner user.

name Name of the Category object.

notes List of notes of the category object.

Methods

str () String representation of category object.

Class Note : django.db.models.Model

Contains main note data access object(DAO) class.

Attributes

owner The Note object’s owner user.

name Name of the Note object.

image Raw image path of the note object.

category Category of the note object.

text Recognized text of the note object.

keywords Important keyword list of the note object.

equations List of equations of the note object.

Methods

str () String representation of note object.

Class Equation : django.db.models.Model

Contains equation data access object(DAO) class.

Attributes

note The Note object’s owner note.

image Cropped image path of the equation object.

latex representation Latex representation of equation object.

Methods

str () String representation of equation object.

24

4 Appendix

Client subsystem’s auto-generated Java interfaces:

Figure 6: LoginActivity

25

Figure 7: RegisterActivity

26

Figure 8: CameraActivity

27

Figure 9: CameraManager

Figure 10: ImageProcessor

28

Figure 11: PolygonViewCreator

29

References

[1] ”3 Easy Steps to Digitize Your Study Notes”. [Online].

https://www.developgoodhabits.com/digitize-study-notes/. [Accessed Feb 18,

2018].

[2] ”How to digitize your handwritten notes”. [Online].

https://www.popsci.com/digitize-handwritten-notes. [Accessed Feb 18, 2018].

[3] ”How to Take Study Notes: 5 Effective Note Taking Methods”. [Online].

https://www.oxfordlearning.com/5-effective-note-taking-methods/.

[Accessed Feb 18, 2018].

[4] ”The LaTeX Project”. [Online]. https://www.latex-project.org/. [Accessed Feb

18, 2018].

[5] ”PDF 2.0”. [Online]. https://www.iso.org/standard/63534.html. [Accessed Feb

18, 2018].

[6] ”The Web framework for perfectionists with deadlines — Django”. [Online].

https://www.djangoproject.com/. [Accessed Feb 18, 2018].

[7] ”Ubuntu 18.10 (Cosmic Cuttlefish)”. [Online].

http://releases.ubuntu.com/18.10/. [Accessed Feb 18, 2018].

[8] ”SQLite Home Page”. [Online]. https://www.sqlite.org/. [Accessed Feb 18, 2018].

[9] ”OAuth 2”. [Online]. https://oauth.net/2/. [Accessed Feb 18, 2018].

[10] ”Unified Modeling Language”. [Online]. http://www.uml.org/. [Accessed Feb 18,

2018]

[11] ”IEEE Citation Guidelines”. [Online]. https://ieee-

dataport.org/sites/default/files/analysis/27/IEEE%20Citation%20Guidelines.pdf.

[Accessed Feb 18, 2018].

[12] ”AutoCompleteTextView”. [Online].

https://developer.android.com/reference/android/widget/AutoCompleteTextView.

[Accessed Feb 18, 2018]

30

[13] ”LoaderManager.LoaderCallbacks”. [Online].

https://developer.android.com/reference/android/app/LoaderManager.LoaderCallbacks.

[Accessed Feb 18, 2018]

31

