
Bilkent University

Senior Design Project
Project short-name: NINO

Project Specifications

Ata Deniz Aydın, Ecem İlgün, Batuhan Kaynak, Selim Fırat Yılmaz

Supervisor: Hamdi Dibekl ioğ lu

Jury Members: Ercüment Çiçek and Özcan Öztürk

Project Specifications Report
Oct 15, 2018

This report is submitted to the Department of Computer Engineering of Bilkent University in partial
fulfillment of the requirements of the Senior Design Project course CS491/2. 

Department of Computer Engineering

Contents

1 Introduction 2

1.1 Description . 3

1.2 Constraints . 4

1.2.1 Implementation Constraints . 4

1.2.2 Dataset Constraints . 4

1.2.3 Economic Constraints . 5

1.2.4 Ethical Constraints . 5

1.2.5 Reliability Constraints . 5

1.3 Professional and Ethical Issues . 5

2 Requirements 6

2.1 Functional Requirements . 6

2.1.1 User Profile . 6

2.1.2 Taking Notes . 6

2.1.3 Note Visual Processing . 7

2.1.4 Note Text Processing . 7

2.1.5 Note Categorization . 7

2.1.6 Note Processing Feedback . 8

2.1.7 Note Exporting and Sharing . 8

2.2 Non-Functional Requirements . 8

2.2.1 Accessibility . 8

2.2.2 Accuracy . 8

2.2.3 Availability . 8

2.2.4 Backup and Recovery . 9

2.2.5 Capacity . 9

2.2.6 Compatibility . 9

2.2.7 Concurrency . 9

2.2.8 Configurability . 10

2.2.9 Error-Handling . 10

2.2.10 Extensibility . 10

2.2.11 Legal and Regulatory Requirements 10

2.2.12 Licensing . 11

2.2.13 Maintainability . 11

1

2.2.14 Performance . 11

2.2.15 Reliability . 11

2.2.16 Scalability . 11

2.2.17 Security . 12

2.2.18 Testing . 12

2.2.19 Usability . 12

2.2.20 Portability . 12

2

1 Introduction

Note taking amounts to an important part of studying materials for many students, be

they grade school or graduate students. In many cases, there are no lecture notes or slides

readily available, or the ones that are available do not cover all of the lecture content. This

requires students to take notes during the lecture.

However, in some cases, the student has to note down the words fast without truly

processing their content, or write down equations without having the time to analyze and

thus understand them. In the case of writing down sentences, one can achieve faster note

taking with tablets/computers [1] but when the lecture notes consist of plots, graphs or

mathematical equations, our market research shows that there is no hardware/software

help to achieve faster note taking than writing it down [2].

In some cases, scribing all the things written on the board (even without making sense

of it) proves to be quite hard, therefore many note taking strategies have arisen [3]. Many

of these strategies revolve around the rule that one first takes notes of keywords, and

then rewrites the notes after class [3]. However, there are two possible problems with this

strategy: the student might forget the information conveyed via that particular keyword,

or might miss important information and not write a keyword about it.

Currently, EverNote™, OneNote™ and Google Docs™ o↵er OCR (optical character recog-

nition) features in which an image is converted to a text. However, these conversions do

not cover mathematical equations or figures. As it is discussed above, many courses include

some kind of figures or mathematics, therefore capturing only text with OCR might lead

to loss of important information. Hence, current software are not capable of providing a

complete note taking system.

We thus propose an app that will convert handwritten and printed notes into an editable

format which can be exported as LATEX or PDF. These notes will preserve the alignment

of the original picture, in either landscape or portrait format. The student will be able to

add his/her own notes on top of the ones extracted from the image. In this way, we hope

to engineer a note taking system that would make the lecture not only more interactive

for the student, but will also let the student listen to more of the lecture.

3

1.1 Description

NINO (NINO Is Not OCR) will be an Android application, targeted primarily for tablets,

that will be able to detect text, equations and figures in pictures taken of notes on paper

or a whiteboard. The user will be able to take pictures directly within the application or

load preexisting pictures from the device. After the program analyzes the picture, it will

be able to present annotations on the picture and store them so that the user can later

view and search through them.

The application will consist of a client Android and web interface for end users, as well

as a backend server application for data storage and processing. In the client application,

the user will first be presented with a login screen where the user may register or log in.

After logging in the user will be able either to add a new picture to their library, whether

by camera or from the device, or to view previously annotated pictures. After a picture is

taken it will be sent to the server for processing. The server will first segment the image

into regions containing text, equations, graphs or other figures, parse the text or equations

(in LATEX) contained in each region, and then process the text and equations in order to

provide helpful hyperlinks to the user. For example, the program may link a variable or

concept to where it was defined in the notes, or to an online resource such as the Wikipedia

page for the concept which the user would be able to open without leaving the application.

The program will also be able to process the text in the document to summarize its content

and tag it with keywords in order to enable more comprehensive searches.

After processing the server will store the annotated picture in the cloud storage reserved

for the user and send it back to the client application. The client will then display the

notes overlaid on the image in an interactive interface where the user may click on links,

rearrange or modify the notes as desired. The user may give positive or negative feedback

on the performance of the recognition of text and equations, and opt to make corrections

and send them to improve the accuracy of the program. The user will also be able to share

the annotated picture either directly as an image or as a LATEX [4] or PDF [5] file. The

notes the user has uploaded will be collected within the personal storage space allotted to

the user, so that the user can view and modify them similarly, search through them, and

categorize them e.g. with respect to course title and subject so as to assist the program in

improving its tagging and summarization of notes.

4

1.2 Constraints

1.2.1 Implementation Constraints

• Git will be used for version control.

• The client side of the application will be implemented firstly as a web application

using JavaScript and CSS and then ported to Android.

• The server side of the application will be implemented in Java

• The application will be developed under the paradigm of object-oriented program-

ming.

• External libraries will be used to train and run neural networks for image and natural

language processing.

• In order to blur faces in images, the program will utilize an external API for face

recognition.

• The system will be implemented in a modular fashion for easier testing and mainte-

nance, with di↵erent modules to segment document images into text, equations and

figures, to detect text, to parse equations, and to process text for annotation and

summarization.

• The system may later be extended with more modules without a↵ecting the perfor-

mance of preexisting modules.

1.2.2 Dataset Constraints

• For training and testing we will firstly use our own notes, as well as handwritten

course notes and blackboard pictures available online. Stills from lecture videos may

also be used with appropriate permission or credit, depending on license. For symbol

recognition datasets from previous research projects [8] are available.

5

1.2.3 Economic Constraints

• Costs may be incurred to maintain servers and to publish the app in the Google Play

Store.

• These costs we intend to handle by ourselves for now, without selling the app for a

cost or including advertising.

1.2.4 Ethical Constraints

• User data will be encrypted, accessible only after authenticating, and will not be

shared with anyone else or used for training without the user?s explicit consent.

• Licenses for the datasets and APIs used will be checked and appropriate permission

will be sought before they are used in the project.

1.2.5 Reliability Constraints

• Users may provide feedback on the accuracy of the text or equations recognized, and

o↵er their corrections to the annotations produced.

• Tested third-party APIs with certain performance guarantees will be used for text

detection.

• Modules will be tested first by themselves and then in tandem during implementation

or later retraining.

1.3 Professional and Ethical Issues

• Consent of the content owner is required. However, since we cannot ensure whether

consent is taken before taking picture of a material, we do not take any responsibility

beyond this. Taking consent for any kind of material to be uploaded to our servers

are the user’s responsibility.

• Since we will store the content in our servers, we will provide security for the user?s

data, and we will not share this data with third parties. However, the user will be

6

able to share the content and processed version so it is expected from user to abide

by copyright of the content.

• People’s faces in the stored picture will be blurred to avoid any legal issues.

• Permission will be sought if required from content owners of datasets used for train-

ing and testing, such as lecture videos. In case videos are marked with a Creative

Commons license [7] giving credit to the content owners will su�ce.

• Licenses for third-party APIs and libraries will likewise be checked before usage.

2 Requirements

2.1 Functional Requirements

2.1.1 User Profile

• Anyone will be able to sign up for the application by providing their name and phone

number.

• During registration, verification SMS will be sent to given phone number.

• The user will be logged in automatically for subsequent openings of the application.

• The user will be able to access the original photos and processed versions of their

notes.

• The user will be able to duplicate previously created notes.

2.1.2 Taking Notes

• The user will be able to take pictures of notes from the application.

• The user will be able to import pictures of notes from gallery to the application.

• After taking a note, the user may manually assign the note to a category, or the

program may suggest a category for the note. If no category has been created, the

note will be assigned to a default category.

7

• The user will be able to create new categories, rename previously created categories,

and delete previously created categories (except the default category).

• The user will be able to change the category of a note.

2.1.3 Note Visual Processing

• Texts in the image will be recognized and converted to ASCII format.

• Equations in the image will be recognized and converted to TEX format.

• Shapes and plots in the image will be recognized and converted to TEX format, in

the form of TikZ shapes and plots [6].

• Faces of people in the original photo will be blurred.

• Taken or imported photos will be processed automatically and their LATEX and PDF

versions will be stored. Thus, for each note .jpeg (the original blurred photo), .tex,

and .pdf files will be stored in memory.

2.1.4 Note Text Processing

• Texts of notes will be summarized, namely important keywords will be extracted.

• Terms in the texts (such as photosynthesis) will be recognized and matched to their

Wikipedia link and description.

2.1.5 Note Categorization

• Each category and each note will be profiled, by associating to each a profile vector

(a profile vector will be created for each of them).

• Each newly taken photo will be suggested a category according to its profile, by

associating it with the category with the nearest profile vector (Nearest category

profile vector will be found and its category will be suggested).

8

2.1.6 Note Processing Feedback

• User will be able to give feedback for mistaken analyses to the processing system and

system will try not to do same mistake again (by means of reinforcement learning).

2.1.7 Note Exporting and Sharing

• User will be able to export notes as LATEX or PDF files.

• User will be able to export and share single or multiple notes as .png, .tex, or .pdf

files, via e-mail or WhatsApp if possible.

• User will be able to obtain a shareable link to a note.

• Users and non-users will be able to access notes via shareable links.

2.2 Non-Functional Requirements

2.2.1 Accessibility

• The system will need the input documents to be in English for all desired functions to

work. User interface will have many language translations added on demand, starting

with English as default.

2.2.2 Accuracy

• All functionality must work in a way that the results are at least acceptable. No

output should look like random guessing. As such the accuracy of the program

will be validated and tested on designated datasets, and ensured to stay above a

predetermined threshold.

2.2.3 Availability

• System uptime should be high to not cause any inconvenience to the user.

9

• Scheduled maintenances to the core functionality should be announced beforehand

and should not take very long.

• Since the system is highly modular, the whole system should not be down due to an

update to a particular submodule.

2.2.4 Backup and Recovery

• The users should have the ability to locally backup their work.

• The server should do regular backups of user data and preferences in a certain time

window.

• Data protection measures such as RAID may be used in order to recover at least

partially from data corruption, without compensating too much from performance.

2.2.5 Capacity

• The server must have su�cient su�cient storage / compute for each user.

• The server must have su�cient su�cient storage / compute to handle at least 10.000

registered users and up to 100 concurrent requests at launch.

2.2.6 Compatibility

• Client user interfaces for web and Android should be compatible with a wide range

of browsers and Android versions, enough to statistically support a good percentage

of potential users.

• Popular output formats, such as LATEX and PDF, should be an export option.

2.2.7 Concurrency

• The server should be able to handle requests in an either a concurrent or parallel

manner, the users should not have to wait for other requests to be handled in a ?first

in first out? type of sequential manner.

10

• Up to 100 request at any given time should be accepted for processing by the server.

2.2.8 Configurability

• The users should be able to manually modify the format of the output, module-

specific properties, or the overall end product itself.

2.2.9 Error-Handling

• Errors must be recognized and accounted for as much as possible. The user should see

an error message that clearly and concisely explains what went wrong to understand

what the problem is without being presented with too much needless info, with steps

to take to solve the problem, if the nature of the problem permits.

• Any unforeseen errors should be presented to the user with an appropriate message

to the user, with an option to the user to report the problem to the developers.

2.2.10 Extensibility

• The system will be highly modular. Any additional modules will be integrated with-

out causing any problems to other modules. The system will be implemented in a

way that addition of extra modules will be easy, so long the module is written.

• Adding extra modules to the system should be straightforward as long as the module

functions correctly by itself.

2.2.11 Legal and Regulatory Requirements

• The users should be made aware that the developers do not take any responsibility

on the event that the user uses the app to violate any laws (e.g. copying licensed

material, editing material etc.) and that the legal responsibilities lie solely on the

user, not the developers.

• Legal regulations should be presented to the user with appropriate disclaimers and

necessary citations.

11

2.2.12 Licensing

• Licenses of any products, libraries, or modules used during development should be

adhered to.

2.2.13 Maintainability

• Since the system is highly modular, subsystems should not be highly coupled, a

change or problem in one subsystems should not a↵ect the others.

2.2.14 Performance

• Each function module must not take more than 5 seconds to complete its process.

• Results of any human interaction (other modules) such as clicks or selections should

not take more than 1 second to provide good user experience.

2.2.15 Reliability

• If any of the modules use means that cannot be configured by the developers to be

more reliable and that can cause potential problems, then the potential problems

that can occur while using such modules should be presented to the user.

• The system must use learning techniques to adapt to di↵erent situations both in

general and for each user to give the best possible results.

2.2.16 Scalability

• Adding more storage and compute to the server should be easy as long as new storage

/ compute hardware is available.

• Rise in demand must be addressed quickly to not cause any drop in performance or

downtimes in the system.

• Modules should be able to work on more than one document if available to make

better predictions.

12

2.2.17 Security

• Users must authenticate themselves before using the system.

• No user should be able to access documents or preferences of other users.

• User login data should be hashed to make sure they are safe even in an event of

security breach in the server.

• Any number of requests that points to bot action or DDOS should be prevented by

taking appropriate measures.

2.2.18 Testing

• Each module / component should be subject to at least unit testing to make sure

there is a good coverage of potential problems before deployment.

2.2.19 Usability

• Users should be able to navigate through the clients without having problems on how

to use it, the process should seem natural without a high learning curve.

• There should be appropriate description to each module so that the user can clearly

understand its function and use cases, preferably with examples or tutorials.

• User interfaces for web and Android should not di↵er too much, so that they do not

seem like altogether di↵erent products for users switching devices.

• Users should be able to contact developers to make suggestions or report problems

and their experience.

2.2.20 Portability

• The user client should start with a web client. The user interface should be able to

be ported to Android.

13

References

[1] ”3 Easy Steps to Digitize Your Study Notes”.

https://www.developgoodhabits.com/digitize-study-notes/. [Accessed Oct 15,

2018].

[2] ”How to digitize your handwritten notes”.

https://www.popsci.com/digitize-handwritten-notes. [Accessed Oct 15, 2018].

[3] ”How to Take Study Notes: 5 E↵ective Note Taking Methods”.

https://www.oxfordlearning.com/5-effective-note-taking-methods/.

[Accessed Oct 15, 2018].

[4] ”The LaTeX Project”. https://www.latex-project.org/. [Accessed Oct 15, 2018].

[5] ”PDF 2.0”. https://www.iso.org/standard/63534.html. [Accessed Oct 15, 2018].

[6] ”PGF and TikZ – Graphic systems for TeX”.

https://sourceforge.net/projects/pgf/. [Accessed Oct 15, 2018].

[7] ”Creative Commons - YouTube Help”.

https://support.google.com/youtube/answer/2797468?hl=en. [Accessed Oct 15,

2018].

[8] ”CROHME: Competition on Recognition of Online Handwritten Mathematical

Expressions”. https://www.isical.ac.in/~crohme/CROHME data.html. [Accessed

Oct 15, 2018].

14

